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Climate change impacts on VBDs

VBDs are climate sensitive Vectorial capacity = f(T°)
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Lafferty KD and Mordecai EA 2016 - F1000Research 2016, 5:2040

Modelling the impact of climate variability on VBD burden, development of
early warning systems (seasonal to climate change time scales).
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Temperature effect on vector biting rates (b)

Scott et al., 2000, J Med Entomol 37(1):89-101

2.00 ¢ Biting rates:
1.90 c
w 180 - . 0. (o} & Puerto Rico ) )
& o Thailand Number of mosquito bites per
= 10 Puero Rico ¢« o % oo day per host.
8 160 y-00meros *% o *o0p0
- R” = 0.008 * LOe0 0% L 9o _
5 0] $ ° When temperature increases,
£ 1407 biting rate increases.
¢ g 130+
= 120 ]
1' . Left:
A0 4 r .
Biting rates of Ae. aegypti, the
1.00 —o—reo——0e- : "t — , , llow fi rm to- it can
20 2 28 2 5 % 7 3 29 3 u 3| |YONOWIGVErmosSquio,itca
Mean weeKly temperature (C) transm{t dengue, Zika & yellow
fever viruses.

Fig. 5. Relationship between temperature and blood-
feeding frequency of female Ae. aegypti collected weekly in
Thailand (1990-1992) and Puerto Rico (1991-1993). Linear
regression lines and equations for each site are included.
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Temperature effect on vector development & mortality (M)

Brady et al., 2013, Parasite and Vectors 6:351
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Figure 4 The distribution of adult female Aedes aegypti and Aedes albopictus survival across a range of temperatures under laboratory &/ Or reSISt des I Ccatlon .
conditions (A and B) and field conditions (C and D). Colours from red to yellow show survival from 100% - 1% of the population remaining.
Grey indicates <1% of the population remaining. Dotted blue lines show the limits for 50% and 95% of the original population remaining.

Water is needed for
breeding sites.

Significant differences
between the lab and
the field!

Ae. aegypti, the yellow fever mosquito Ae. albopictus, the Asian tiger mosquito
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Temperatures effect on Extrinsic Incubation Period (EIP)

Shapiro et al., 2017, Plos Biology 15(10)
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The Extrinsic Incubation Period (EIP) - example for P. falciparum and An. gambiae: time
required for the pathogen to develop inside the mosquito vector before it becomes infectious
(when the pathogen is detected in their salivary glands).

When temperature increases, the EIP decreases e.g. it shortens.

If the temperature is too low, mosquito dies before the pathogen can replicate in their body e.g.
before becoming infectious (about 30days life span in the field).
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Methods to model the impact of climate on VBDs

Statistical models

Mechanistic models

(A) Occurrences

(8) Predictors

(A) Dynamical model framework
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Stat models: Maxent, BRTs, Bayesian models, Mahalanobis distance...

Mechanistic models: SEIR/SIR, Ro, Fuzzy logic, climate envelope...

Tjaden et al. (2018). Trends in Parasitology 34(3): 227-245. http.//dx.doi.org/10.1016/}.pt.2017.11.006
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Disclaimer: many factors affect VBDs

Rank* Driver
1 Changes in land use or agricultural
practices

2 Changes in human demographics and
society

3 Poor population health (e.g., HIV,

malnutrition)
4 Hospitals and medical procedures
5 Pathogen evolution (e.g., antimicrobial

drug resistance, increased virulence)

6 Contamination of food sources or water
supplies

7 International travel

8 Failure of public health programs

9 International trade

10 Climate change

Woolhouse and Gowtage-Sequeria, EID, CDC 2005
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Impacts of VBDs
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Climate change impact on malaria

rcp26 2080s rcp45 2080s

5 Malaria models

5 Climate models

4 emission scenarios
SSP2 population scenario

Climatic suitability increases for all
malaria models over Tropical highlands
and decreases over low altitude regions
(extreme RCP8.5 emission scenario —
2080s).

Caminade et al. (2014). PNAS 111(9): 3286-3291. doi: 10.1073/pnas.1302089111.
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Is malaria moving to higher altitude & latitude?

ACta Tropica xxx (2013) XXx-Xxx

Altitudinal Changes in Malaria
Incidence in Highlands of Fae
Ethiopia and c0|0mbia journal homepage: www.elsevier.com/locate/actatropica
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A first report of Anopheles funestus sibling species in western

The impact of global warming on insect-borne diseases and on highland malaria in particular Kenya highlands
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variability of temperature. We provide evidence for an increase in the altitude of malaria

distribution in warmer years, which implies that climate change will, without mitigation, result in
an increase of the malaria burden in the densely populated highlands of Africa and South America.
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The Asian tiger mosquito Ae. albopictus

Ae. albopictus

Source: CSIR \

Main introduction routes

Figure 2. Main Aedes albopictus inroduction routes: (A) Used tyres. (B),(C) Lucky Bamboo (Dracaena spp.).

Scholte & Schaffner, 2007

Rapid spread worldwide

Wikimedia commons

blue: original distribution, cyan: areas where
introduced in the last 30 years.

Rapid spread in Europe
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Figure 3. Presence of Aedes albopictus in Europe per province for the years 1997-2007. Data to complete this
figure were kindly made available by Roberto Romi (Italy), Roger Eritja and David Roiz (Spain), Eleonora Flacio
(Switzerland), Charles Jeannin (France), Anna Klobucar (Croatia), Zoran Lukac (Bosnia and Herzegovina), Igor
Pajovic and Dusan Petri¢ (Serbia and Montenegro), Bjoern Pluskota (Germany), Anna Samanidou-Voyadjoglou
(Greece). The map was made by Patrizia Scarpulla. The 2007 outbreak of Chikungunya virus in Italy is indicated
with an arrow in the 2007 box.

Scholte & Schaffner, 2007
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Ae. albopictus: model scenarios vs observations

Model driven by climate obs (EOBS) 1990-2009 ECDC Obs — June 2011
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Model based on an overwintering criterion (Tjanuary >0C, Rain_annual>500mm) and different
thresholds in annual Temperature:

suitable 12C< T_annual

high risk 11C< T_annual < 12C

medium risk: 10C< T_annual < 11C

low risk: 9C< T_annual < 10C

no suitability: T_annual < 9C

Future risk increase: Benelux, Balkans, western Germany, the southern UK
Future risk decrease: Spain and Mediterranean islands s




Zika outbreak in Latin America and El Nino

NIHR Health Protection Research Unit in Emerging and Zoonotic Infections

Global risk model for vector-borne transmission of Zika Virus introduction in 2013  Climate optimum in 2015
virus reveals the role of El Nifio 2015 R B &~y B B S

Cyril Caminade™™", Joanne Turner®, Soeren Metelmann®™<, Jenny C. Hesson™?, Marcus S. C. Blagrove®®, 20 4
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“temperature conditions related to the 2015 EIl Nifio climate phenomenon were exceptionally
conducive for mosquito-borne transmission of ZIKV over South America”

Caminade ef al., PNAS 2017
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Climate and the outbreak of Zika virus in 2015-16

inside of them incubate faster.”

Global warming leads to much quicker spread of the Zika virus because
the increased temperature, "makes mosquitoes mature faster, ... bite
more due to having a higher metabolism, and makes the Zika virus

— Al Gore on Tuesday, October 11th, 2016 in a speech
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El Niino and Global Warming
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Mosquito-borne diseases like Zika can be extremely sensitive to climatic changes
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Global risk model for vector-borne transmission of Zika
virus reveals the role of El Nifio 2015
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“There’s a window of temperature that’s ideal, and when you
look at 2015, the numbers were in the right range,” said Cyril
Caminade, research associate with the university’s Institute
of Infection and Global Health and author of the study.

https://www.scientificamerican.com/article/el-nino-and-global-

warming-blamed-for-zika-spread/

http://www.pnas.org/content/early/2014/01/30/1302089111.abstract
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Other VBDs examples

s

No. of ticks/human population
¢« >0and<6.11 x 10

® 6.11x 10°to 1.761 x 10°
@ 1.762 x 107 to 3.300 x 10°
@ 3.300 x 10° t0 7.463 x 10”
@ 7.464 x 10° t0 2.584 x 10*

The distribution of Ixodes scapularis,
reflecting information submitted to provincial
and federal public health agencies from
January 1990 to December 2003 and to the
Lyme Disease Association of Ontario for 1993

to 1999 Ogden et al., 2008

African Trypanosomiasis in Zambezi valley
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Fig. 3. TBE incidence in AO and in Russia as a whole in 1980—2009. Tokarevich et al., 2011

Caminade C., K.M.
Mcintyre and A.E.
Jones (2018). Ann.
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Acad. of

Sc., http://dx.doi.org/

10.1111/nyas. 13950

Ann. N.Y. Acad. Sci. ISSN 0077-8923
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Impact of recent and future climate change on
vector-borne diseases

Cyril Caminade, {22 K. Marie Mclintyre, 22 and Anne E. Jones =%
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Liverpool, UK. 2NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK. 2Department of
S LUK

CHE webinar, 05 Dec 2019

’&’d UNIVERSITY OF

&/ LIVERPOOL



Other infectious diseases affected by climate change...
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Conclusions

Climate impacts vector borne diseases distribution (breeding sites — development and
survival of vectors, pathogen development rate inside the vector e.g. EIP...)

Increasing evidences that climate change already played a role in the background over
the past 20 years: worrying trends have been observed in different temperate, arctic and
highland regions.

Many factors to consider to anticipate the real future of infectious diseases (socio-
economic, demography, land use changes, drug and insecticide resistance,
technological break through...).

Need to use different disease modelling approaches and ensemble of climate models,
emission & population scenarios to assess uncertainties, and these can be quite large!

Model validation is critical but difficult - validation relies on the quality of health and
climate datal

Climate change is already affecting our health directly (climatic extremes: heat waves,
floods, air pollution...) and will have significant indirect effects from macro to micro scale
e.g. on freshwater and oceanic resources, agriculture, livelihoods, population
migration... It only started...
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